
0-1 Knapsack Problem（0-1背包问题）

Suppose that there are objects of number n, which has 

weight wi and profit pi. We should take some of them with 

weight no more than c and make the sum of profit (of 

objects we take) as great as possible.

We will discuss some variants of (0-1) knapsack problem: 

the set-union knapsack problem (SUKP), the discounted {0-

1} knapsack problem (D{0-1}KP), and the bounded 

knapsack problem (BKP).



Set-Union Knapsack Problem (SUKP)

• Let U={1, ... ,m} be the set of objects. Object i is with 

weight wi.

• Let S={S1, ... ,Sn}. Each Si is a subset of U, with profit pi.

• Choices we can choose is subsets of S. When we take 

Sa1, ... ,Sak, the profit is pa1+...+pak, and the weight is sum 

of weight of objects in 'Sa1∪...∪Sak'.

• If m=n and Si={i}, it's a 0-1 knapsack problem.



Discounted {0-1} Knapsack Problem (D{0,1}KP)

• Let U={U11, U12, U21, U22, ... ,Un1, Un2}, in which Ui1 and Ui2

are in a group Si, for i=1, ... ,n. Each Uij is with weight of 

wij and profit pij.

• If we take both Ui1 and Ui2, the profit is still pi1+pi2, but the 

weight is wi<wi1+wi2, which reflect the word 'discouted'.



Bounded Knapsack Problem (BKP)

• Let U={1, ... ,n} be the set of objects. Object i is with 

weight wi and profit pi.

• What is different from {0-1}KP is that the number of an 

object can be more than one, written bi. That is to say that 

we can take i-th object of number bi at most.

• If bi=1 (for all i=1, ... n), it's a 0-1 knapsack problem.



Genetic Algorithm（GA，遗传算法）

Genetic algorithm can be used in some optimization 

problems（优化问题）. When we want to find the optimal 

solution（最优解） satisfying some limitations, We can 

follow these steps.

• Preparations: Generate solutions randomly (or in other 

ways) of number NP. Let these solutions are of generation 

0. Let t=0. (t is the generation.)



Genetic Algorithm（GA，遗传算法）

• Step 1: Act the crossover operator（交叉算子） on some 

items (written x1, ... , xa) of generation t, and get item y.

• Step 2: Act the mutation operator（变异算子） on y. 

• Step 3: Because the new y may be infeasible, we adjust it 

to make it feasible. This step usually use a simple 

algorithm, such as greedy algorithm.



Genetic Algorithm（GA，遗传算法）

• Step 4: Judge whether y is fit enough (for example, 

whether fitness of y is greater than that of a given item in 

generation t), and put a proper one in the t+1 generation. 

t=t+1.

• Repeat steps above so that there is NP items in the 

generation.

• Make more generation until the fitness of items don't 

increase. Then we get the optimal solution.



Genetic Algorithm（GA，遗传算法）

The keys of Genetic algorithm are the crossover operator 

and the mutation operator.



Residue Classes of Module n（模n剩余类）

• Zn={[0], [1], ... ,[n-1]}, and [n]=[0], [n+1]=[1], ... , [k+n]=[k], 

for all k∈Z.

• [a]+[b]=[a+b], [a][b]=[ab], and we can proved that Zn is a 

group, even a ring.

• example: n=10, 

[6]+[7]=[13]=[3], [5]-[9]=[-4]=[6],

[8][9] (=[-2][19]) =[72] (=[-38]) =[2]



Direct Product（直和）

• If G1, ... ,Gn are groups, we can define group 

G1×...×Gn={(g1, ... ,gn) | gi∈Gi, i=0,1, ... ,n}, in which 

(g1, ... ,gn)+(h1, ... ,hn)=(g1+h1, ... ,gn+hn).

• Moreover, if G1, ... ,Gn are rings, then 

(g1, ... ,gn)(h1, ... ,hn)=(g1h1, ... ,gnhn).



Genetic Algorithm in SUKP

• We use a vector of length of n (equals to the size of S), 

whose components are all 0 or 1. We can regard a vector 

as an element in Z2×...×Z2, and use operators in group 

or ring on it.

• If the i-th components is 1, it means we take Si, otherwise 

it means we don't take Si.

• Preparations: Generate solutions of number NP randomly. 

t=0.



Group Theory-based Optimization Algorithm (GTOA) in SUKP

• Crossover Operator: C(X1,X2,X3)=X1+F(X2-X3), in which 

X1, X2 and X3 are input vectors, and F is a random vector 

with compents of 1, 0 or -1. 

• Mutation Operator: SMO(X). Give a probability p (in (0,1)). 

For each component in X (written xi), generate a random 

number r in (0,1). If r<p, make xi=1-xi, else xi doesn't 

change.

• Adjustment: S-GROA (greedy algorithm)



Group Theory-based Optimization Algorithm (GTOA) in SUKP

• Judgement: Suppose that X is in the previous generation 

and Y is a new item. If the total profit of Y is greater than 

that of X, put Y into the next generation, otherwise put X 

into the next generation.



Genetic Algorithm in D{0,1}KP

• We use a vector of length n, similar to that in SUKP, but 

for which group we have 4 choices, so the vector is in 

Z4×...×Z4 instead of Z2×...×Z2.

• The 0,1,2,3 value of the i-th components in the vector 

separately means taking none (in the i-th group), taking 

the first one, taking the second one, and taking both of 

them.

• Preparations: Similar to that in SUKP.



GTOA in D{0,1}KP
• Crossover Operator: C(X1,X2,X3)=X1+F(X2-X3). Or C(X1, 

X2, X3, X4)=X1+X2(X3-X4).

• Mutation Operator: IRMO(X). Give a probability p (in (0,1)). 

For each component in X (written xi), generate a random 

number r in (0,1). If r<p, half-probability make [xi]=[-xi], 

another half-probability change [xi] to a random value (not 

equals to [xi]). If r≥p, xi doesn't change.

• Adjustment: D-GROA (greedy algorithm)

• Judgement: Similar to that of SUKP



Genetic Algorithm in BKP

• Suppose that the number of the i-th object is bi.

• We use a vector of length n in Zb1+1×...×Zbn+1.

• The i-th component is the number of the i-th object we 

take.

• Preparations: Similar to that in SUKP.



GTOA in BKP

• Crossover Operator: C(X1,X2,X3)=X1+F(X2-X3).

• Mutation Operator: IRMO(X).

• Adjustment: B-GROA (greedy algorithm)

• Judgement: Similar to that of SUKP


